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Classical evolution of fractal measures on the lattice
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We consider the classical evolution of a lattice of nonlinear coupled oscillators for a special case of initial
conditions resembling the equilibrium state of a macroscopic thermal system at the critical point. The displace-
ments of the oscillators define initially a fractal measure on the lattice associated with the scaling properties of
the order parameter fluctuations in the corresponding critical system. Assuming a sudden symmetry breaking
(quench), leading to a change in the equilibrium position of each oscillator, we investigate in some detail the
deformation of the initial fractal geometry as time evolves. In particular, we show that traces of the critical
fractal measure can be sustained for large times, and we extract the properties of the chain that determine the
associated time scales. Our analysis applies generally to critical systems for which, after a slow developing
phase where equilibrium conditions are justified, a rapid evolution, induced by a sudden symmetry breaking,
emerges on time scales much shorter than the corresponding relaxation or observation time. In particular, it can
be used in the fireball evolution in a heavy-ion collision experiment, where the QCD critical point emerges, or
in the study of evolving fractals of astrophysical and cosmological scales, and may lead to determination of the

initial critical properties of the Universe through observations in the symmetry-broken phase.

DOI: 10.1103/PhysRevE.75.041111

I. INTRODUCTION

Chains of nonlinear coupled oscillators are of a funda-
mental nature: they provide a laboratory to explore the setup
of thermodynamical properties through the microscopic dy-
namics in complex systems [1-3]. In addition, being the dis-
crete version of field theories, they naturally emerge in any
numerical study of the nonlinear dynamics as well as statis-
tical mechanics of classical fields [4]. One of the most im-
portant questions in the latter case is to determine the condi-
tions that can drive the evolving system toward a thermalized
stationary state. In the early days Fermi, Pasta, and Ulam [5]
obtained deviations, even for large times, from the naively
expected equipartition of the energy among the different os-
cillators. Through the efforts to explain these results, it be-
came clear that, for appropriate initial conditions, a variety of
stable periodic solutions (breathers, solitary waves) [6], de-
fined on the nonlinear chain, exists. Therefore, the choice of
the ensemble of the initial configurations strongly influences
the long-time behavior of the system dynamics. Recent
works [3,4] show that for a random ensemble of initial con-
figurations a sufficiently large system relaxes to the usual
equilibrium distribution, but the corresponding relaxation
time strongly depends on the parameters of the theory. These
studies include the case when a chain of oscillators is re-
placed by a multidimensional [two- (2D) or three- (3D)] lat-
tice [4]. In fact, when considering nonlinear lattices in more
than one dimension, the thermalized equilibrium state can
posses critical properties. The question of how critical prop-
erties can dynamically occur in a system of coupled oscilla-
tors is not yet fully understood. Some recent investigations
[2] indicate that changes in the topological properties of the
phase space of the considered system are induced by fine-
tuning the mean kinetic energy of the oscillators. The critical
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state, when formed, is associated with appropriately defined
fractal measures on the nonlinear lattice.

In the present work we investigate the scenario when such
a critical state has already been formed, and a sudden sym-
metry breaking drives the system away from critical behav-
ior. Furthermore, it is assumed that the time scale of the
symmetry-breaking process is much smaller than the relax-
ation time of the oscillator dynamics. Although we are con-
cerned with the general case of the evolution of a set with
fractal geometry, we focus on the large subclass where the
corresponding measure is generated by a scalar field. In fact,
the scalar field dynamics considered in this work covers a
large variety of phenomena with critical fluctuations which at
equilibrium are described by the universality class of the 3D
Ising model and its projections to lower dimensions. Hence,
the above model is of great physical interest since it is real-
ized in many different areas of physics. In a heavy-ion col-
lision experiment, if the fireball passes near the QCD critical
point, it acquires critical correlations. The subsequent expan-
sion and cooling induce a nonequilibrium evolution for the
effective field equations of motion, which dilutes the initial
fractality. The question is whether the corresponding relax-
ation time is long enough to acquire imprints of the initial
critical state at the detectors [7]. On the other hand, within
the framework of scalar field dynamics, one can impose ini-
tial conditions associated with self-similar fluctuations of the
inflationary field, and study their evolution as they grow and
transform to the large-scale inhomogeneities of the observ-
able Universe [8]. A similar approach, but with different dy-
namics, has been applied to the fractal-like structure of the
Universe at large scales (star and galaxy clusters). The evo-
lution in this case is crucial for the substructure survival or
deformation [9,10].

In order to implement the aforementioned scenario, we
will use the critical state as initial condition imposed on the
oscillators in the lattice. The corresponding fractal measure
is generated through a suitable excitation of the oscillators.
Contrary to the existing analysis of correlations and their
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evolution in a fractal lattice [11], our approach is closer to
the conditions expected to occur in a real critical system,
where inhomogeneities in the order parameter density have a
fractal profile embedded in a conventional space. The evolu-
tion of initial fractal measures has been studied both classi-
cally, in the context of reaction-diffusion models [12], and
quantum mechanically [13]. In the classical case an uncon-
ventional decay of correlations was observed, while in the
quantum one the initial fractal dimension turns out to be a
conserved quantity.

We investigate first the 1D case of a nonlinear chain and
then extend our treatment to lattices in higher dimensions.
The 1D example, although it cannot be directly related to a
critical system in the absence of long-ranged interactions,
due to the no-go theorem of Peierls [14], helps for the sim-
pler illustration of the basic dynamical mechanisms which
dominate the evolution of the system in the metacritical
phase. The extension to 2D is straightforward using the in-
sight gained by the 1D model. The main finding of this work
is a set of conditions that control both qualitatively and quan-
titatively the time scale for which traces of the initial critical
state, characterized by the fractal mass dimension, are sus-
tained. In addition, we show that this is a new time scale not
directly associated with the relaxation time toward the false
vacuum. Our analysis shows that the fractal dimension de-
scribing the geometry of the critical state is a valuable ob-
servable, which can be determined even in the symmetry-
broken phase, allowing for the calculation of critical
exponents and consequently for the determination of the uni-
versality class of the occurring transition [15].

The paper is organized as follows. In Sec. II we describe
the dynamical model used in our analysis and explain the
algorithm used to generate the initial conditions. In Sec. III
we give the numerical solution of the equations of motion for
the 1D case, as well as the observables that are relevant in
quantifying the effect of the sudden symmetry breaking. To
facilitate our analysis we first consider in Sec. III A the har-
monic chain, and in Sec. IIIl B we include nonlinear chain
interactions. In Sec. IV we extend our study to 2D, discuss-
ing also the higher-dimensional case. Finally, in Sec. V we
present briefly our concluding remarks.

II. GENERATING A FRACTAL MEASURE IN A CHAIN
OF NONLINEAR OSCILLATORS

The dynamical system considered consists of a set of
coupled oscillators located on an equidistant lattice. These
oscillators are the discretized version of a self-interacting
scalar field. In a simplified approach we investigate first the
1D case when the oscillators are arranged in a closed chain.
The Lagrangian of this system is taken as

N
L3 (3 el -+ ) Vi |

(1)

where « is the lattice spacing and V(o) is the self-interaction
term. The coupling term between the oscillators originates
from the discretization of the spatial derivative term in the
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Lagrangian density of the scalar field of(x,7), while the
choice of the potential is adapted to the typical form for the
description of spontaneous symmetry breaking in second-
order phase transitions.

We study the dynamics implied by Eq. (1) using appro-
priate initial conditions {o;(0)} in order to define a fractal
measure on the 1D lattice." The construction of these con-
figurations is based on a finite approximation to the 1D Can-
tor dust with prescribed Hausdorf fractal dimension Dy
[16,17]. Although the construction algorithm for such a set is
described in several textbooks on fractal geometry, we also
present it here briefly in order to be self-contained. The first
step in the algorithm is the partition of the finite real interval
[0,1] into three successive subintervals of sizes €, €,, and
€3, in ratios €,/€,=r/(1-2r) and €,/€3=(1-2r)/r, where
rel(0,3), covering the entire set [0,1]. The middle subinter-
val is called the trema where the two others are called pre-
curds [16]. At each step of the algorithm the trema is omit-
ted, while the precurds are divided also into three
subintervals with sizes satisfying the same ratios as above.
At the kth stage of the algorithm there are 2 precurds and
2k—1 tremas. In the limit k— o we obtain a Cantor dust with
fractal dimension log 2/log(1/r). Thus, choosing r=2""7r,
we can in practice construct a set with the desired fractal
dimension D;.

A finite approximation to the Cantor dust with dimension
Dy can be obtained using the centers of the precurds xgk) (i
=1,...,2" at the kth algorithm step. This set can be easily
embedded on a finite equidistant lattice using the transforma-
tion 1V=[(d,yu/ dyip)x\"1+ 1, where d,,=min,, [x\"—x"
d,,,dx:max|x(k)—x(k) , and [- -] denotes the integer part. Thus,
the set of ng

i J
is a realization of the Cantor dust defined in the
interval (0,Ne«], with N=[d,,,./d,,;,]+1. In this interval we
can construct the density as

)

ok
1
&) =52 oy - ofY). (2)
i=1

The fractal properties of the set are quantitatively depicted in
the scaling law

M(e) ~ &Pr, (3)

where M(g) is the number of set points ng) within a distance

e from any given reference point vj.k) (j # i) belonging to the
set.

Using the density (2) we can map the fractal geometry of
the Cantor dust approximation to the nonlinear oscillators on
the lattice by assuming that the displacement of the vth os-
cillator is obtained through the integral

n fact, an ideal fractal in the mathematical sense cannot be de-
fined on a discrete space. However, physical fractals are always
defined between two scales and therefore can be embedded in a
lattice.
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FIG. 1. o field for a Cantor-like lattice of size N=18 819, ob-
tained using k=11 and =277,

v+0/2
o,= 72" f pP(g)de, (4)
=012

where 7, is a random variable taking the values +1 with
equal probability, 0<d<1, and v=1,...,N. With this
choice it is straightforward to define a fractal measure on the
oscillator chain through the obviously satisfied property

V=V§k)+£

> o)

m({) = o ¢, &)

where the average is taken over all ng).

An example of a o-field configuration is depicted in Fig. 1
for k=11. It must be noted that the number of sites in the
obtained equidistant lattice (N=2 X 10*) is much larger than
that in the generating Cantor set (2'!). The inset is presented
to illustrate the self-similarity of the set more transparently.

The constructed set of oscillators (o field) possesses the
property (5), as can be seen in the log-log plot of m({) versus
{ presented in Fig. 2. The exponent Dy, i.e., the fractal mass
dimension, is equal to 5/6 within an error of less than 1%.

There are a few comments to be added concerning the
connection of the constructed oscillator chain with critical
phenomena. In fact, the equilibrium position of the oscilla-

1000 5

1004

m(C)

10; D=0.825

10 100 1000

FIG. 2. (Color online) m({) vs £, in the constructed set of oscil-
lators. The slope Dy is equal to 5/6 within an error of less than 1%.
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tors can be identified with the order parameter of an equiva-
lent critical system, while the displacements o, are associ-
ated with the fluctuations of the order parameter. Clearly, at
the critical point the expected fluctuation pattern possesses
fractal characteristics in close analogy to the measure (5)
defined on the considered oscillator chain.

III. FRACTAL MEASURE DEFORMATION
IN THE 1D CASE

In the previous section we determined the values of the
scalar o field on the N lattice sites, in order to present fractal
characteristics. That is, from the total of N oscillators we
have displaced 2* of them to the value +1 while keeping the
rest to zero, in such a way that Eq. (5) holds and the system
possesses a fractal mass dimension D, We are interested in
studying the evolution of this o configuration according to
the dynamics determined by the Lagrangian (1), and espe-
cially we focus on the evolution of m({). Before considering
an anharmonic, in general, potential suitable to describe the
aforementioned symmetry breaking (for example, of fourth
order), it is interesting to investigate the simple harmonic
case where there is some analytic information, in order to
acquire a better apprehension. However, even this simple
model will reveal a rich and unexpected behavior.

A. Second-order potential

We consider first the second-order potential
A 2
V(o) =7 (o-1)"-Ad, (6)

where N\ and A are the coupling parameters of our model. All
the quantities (o, \, A, as well as the space-time variables)
appearing above are taken to be dimensionless. The corre-
sponding equation of motion for the ith oscillator derived
from Egs. (1) and (6) is

L1 N\
0'1':;(0}41*‘0}—1—20'1‘)— EUi—E—A . (7)

In order to solve it we use the leapfrog time discretization
scheme, leading to

2

dr
2 1 1 1 1
ot =20 - ol + pel ot +dt =200
A A
—dt2<—o;'+' ———A), (8)
2 2

where « is the lattice spacing and dt is the time step. The
superscripts indicate the time instants and the subscripts the
lattice sites. As usual we perform an initial fourth-order
Runge-Kutta step to make our algorithm self-starting, and we
impose periodic boundary conditions. The numerical integra-
tion results are not sensitive to the « and dt choice, provided
that dr< /2.

Let us first assume zero initial kinetic energy, i.e., 0;=0,
for every lattice site, which physically is a strong require-
ment of equilibrium. We evolve the constructed fractal con-
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FIG. 3. (Color online) m({) vs ¢ for three successive times ¢
=0, 5,and 9, for A=1 and A=1.

figuration, obtained using k=11, according to (8) for various
potential parameters. In Fig. 3 we depict m({) versus ¢ for
three successive times =0, 5, and 9, for A=1 and A=1.
Initially the slope ¢ is the fractal mass dimension D;. Here
we have chosen Df=5/ 6. As we can see, the initial fractal
geometry is completely lost at t=5. However, at t=9 it is
almost reestablished.

Let us explore this remarkable result further. In the upper
graphs of Fig. 4 we present the evolution of the mean field
value {o(¢)) for three N and A cases. In the lower ones we
show the corresponding evolution of the slope () of m({)
versus { [each i(¢) value obtained through a linear fit]. First
of all, the spatial mean field value {o(r)) oscillates around the
potential minimum o,,;,,=1+2A/\ with constant amplitude,
as expected. Second, one oscillator moving in the potential
(6) has the period T=212/ VX, and this holds equally well
for (o(z)) too, due to the synchronization of the dominating
zero background [18].

We observe that the exponent ¢Az) rapidly reaches the
embedding dimension value 1, but it reacquires a value close
to the initial one periodically. It is easy to see that this (par-
tial but clear) reestablishment of the initial fractal geometry

(a) (c) (e)
40

<o(t)>

0 50 100 0 50 100 O 50 t‘lOO

FIG. 4. (Color online) {o(#)) and i(z) evolution for A=1 and
A=1 (a), (b), for \=10 and A=1 (c), (d), and for A=1 and A=10
(e), (f). The dashed line in the lower graphs marks the F()=1-[1
—/(0)]e™?" curve, with g=0.013.
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FIG. 5. AE(t) for A=10 and A=1. The minima coincide with
those of (o (r)) and i(z).

happens at times where (o(r)) returns to its starting point,
which is the lower turning point of the oscillations. In the
case we are looking at, this starting point corresponds to
(0(0)) =0 (since only a small fraction of sites is displaced to
+1 while the others form a zero background) and to d;(0)
=0 for every oscillator. Therefore, the explanation for this
behavior is deduced easily. Indeed, initially only the discrete
set of oscillators displaced to +1 contributes to the integral
(5), while the zero background adds zero effect. As the sys-
tem of coupled oscillators evolves in the potential (6), this
zero background is excited, and its nonzero but trivial con-
tribution to (5) sufficiently overcomes that of the initial £1°s
and consequently completely deforms the fractal geometry.
However, we expect a simultaneous return of this back-
ground to zero (synchronization), since the energy transfer
between the different oscillators takes place through the spa-
tial derivative (which is small since the displacement to %1 is
not large compared to the potential minimum), and therefore
only the zeros close to the initial £1’s will return to a differ-
ent value. Moreover, this behavior is amplified by the initial
zero kinetic energy for all oscillators, which strengthens ho-
mogeneity. As a result, at times where (o(z)) and the zero
background return to the lower turning point, the system re-
exhibits a power law behavior in m({) with exponent close to
the initial one, i.e., to the fractal mass dimension D;=5/6.
Each reappearance of the initial fractal geometry will survive
as long as the system stays close to its lower turning point;
therefore the corresponding interval will be larger for
smoother potentials at their minimum. This effect can be
weakly seen by comparing the lower left and right plots of
Fig. 4. Lastly, due to the nontrivial excitation of the zeros in
the neighborhood of the initial +1’s, a number that increases
monotonically as time passes, every partial reestablishment
of the initial fractal geometry will possess a slightly larger
exponent than the previous one. This behavior is observed in
Fig. 4, where the () value at the minima increases succes-
sively. Therefore, we expect that the dynamics will totally
deform the original fractality in the end.

A supporting argument for the cogitation analyzed above
is the calculation of AE(f)==NE,(t)-E«(0)]?, which pro-
vides a measure for the divergence of the oscillators’ total
energies from their initial values. In Fig. 5 we plot AE(z) for
the A=10 and A=1 case. As we observe, it presents minima
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for the same times as (o(r)) and i(r); therefore the partial
reappearance of the fractal geometry happens when the os-
cillators acquire energies close to their initial ones. However,
AE(t) cannot describe the mixing of energy between the dif-
ferent oscillators.

There are two time scales in the reappearance phenom-
enon. The first, named 7, is the period of the partial reestab-
lishment of the initial fractal mass dimension. It coincides
with the oscillation period as we have already mentioned.
The second, 7, is the time scale that determines the complete
deformation of the initial fractal geometry. We quantify an
estimation of 7, by assuming that the ratio of two successive
variations of ¢(¢) at the corresponding minima is constant. If
¢, denote these successive minima and #;=/7, the corre-
sponding successive times, this natural assumption reads

¢l+2 - ¢I+1 =C. (9)
Y1 =t
This finite difference equation has the solution
=1-[1-(0)]e™", (10)

if C=e79", where we have added the necessary terms in
order to get correct values for /=0 [¢(0)] and for [— oo
[(t;) — 1]. Therefore, we determine 7, in terms of the expo-
nent g as 7,=~5/q, since the characteristic time is 1/¢, and
for t=5/q the deviation from the embedding dimension is
considered as completely lost, falling below the threshold
value of 1072 (in close analogy with capacitor discharge in
electronics). The approximation (9) reproduces very well the
exact ¢, behavior, as can be observed in Fig. 4 where we
display, with the dashed line, the analytical estimation (10)
for g=0.013. Indeed, g offers a measure of the deformation
of the initial fractal geometry, and in the following we inves-
tigate numerically its dependence on the various model pa-
rameters.

First, ¢, i.e., 7, is completely independent of A and A,
contrary to 7;, which (coinciding with the oscillation period)
depends on A. The constant value of ¢ for different A and A\
is a result of the increase of the oscillation frequency com-
bined with a compensating decrease of the difference ¢,
— ;. The corresponding g-\ and g-A plots are trivial hori-
zontal lines.

On the left plot of Fig. 6 we depict the dependence of g on
the total number of lattice sites N, for A\=1 and A=1. Note
that, by increasing k in the construction of the Cantor
2k_point set, we have a much more rapidly growing equidis-
tant lattice (the points in Fig. 6 correspond to a successive
increase of k from 7 to 13). It is clear that ¢ decreases expo-
nentially with increasing N; therefore the deformation be-
comes weaker. The explanation is straightforward since, by
increasing the number of Cantor points (which will form the
+1’s in the equidistant lattice), we need many more sites with
zero value. In other words, the measure of the +1’s relative
to the zero background decreases with increasing N. Due to
the influence of this background on the reappearance phe-
nomenon (larger times needed for the mixing of the oscilla-
tors through the spatial derivative), the deformation becomes
weaker with increasing N, i.e., ¢ decreases. Finally, it is ob-

PHYSICAL REVIEW E 75, 041111 (2007)

0.1

0.01+

01 02
(8c)

FIG. 6. (Color online) Left: exponent ¢ defined in Eq. (10)
versus total lattice site number N, for A=1 and A=1. Right: g ver-
sus the initial variation of the field values ()2, calculated for the
different N values of the left plot. The solid lines mark exponential
fits.

vious that in an infinite system the initial fractal geometry
will be periodically deformed and reestablished for infinite
time (g—0, i.e., 7,— for N—o0), since in this case the
initial measure of the +1’s is zero and therefore infinite time
is needed for the mixing and desynchronization of the zero
background.

On the right graph of Fig. 6 we show the dependence of g
on the initial variation of the o field, calculated from (Jo)?
=<o2>—<0'>2=2io',-2/N— (2,0;/N)? at t=0, for the different N
values used in the left plot. The initial variation of the o
field, reflecting the domination of the homogenous zero
background, affects the deformation exponent g. Larger ini-
tial (80)? values correspond to zero background with smaller
measure relative to the +1’s, and therefore to weaker reap-
pearances, i.e., to larger ¢’s. On the other hand, for N— oo,
(80)*—0, the measure of the +1°s becomes zero, and the
reappearance phenomenon holds for ever (¢—0, ie., 7
— OO),

Another possibility could be to change the initial (80)* by
displacing randomly all the oscillators from their constructed
values, while keeping N constant. However, we avoid doing
so since this procedure alters the initial fractal mass dimen-
sion. Instead, we may perturb randomly the initial time de-
rivatives and investigate the effect of the variation of the
initial kinetic energies on ¢. In Fig. 7 we present the depen-
dence of ¢ on the variation of &; at t=0, given by (85)°
=(6%)—(3)*=2,67/N-(2,5;/N)?, for N=18 819 (2! Cantor
points), in the A=1, A=1 case. Indeed, we observe a signifi-
cant increase of ¢ for larger (85)% as expected, due to the
desynchronization of the zero background, i.e., the initially
zero oscillators are excited and mixed due to their different
kinetic energies too, apart from their coupling to the +1’s.
Note that the turning point is not zero any more, and {o(z))
moves to negative values, too. Finally, note that, additionally
to this ¢(0) perturbation, there is always a constant initial
(80)? present, resulting from the +1’s ((60)>=~0.1 in this
specific case), which cannot be removed. Therefore, the sta-
bilization of ¢ for sufficiently small (85)? is due to the over-
coming effect of (80)? comparing to that of (55)%.
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FIG. 7. Exponent g versus initial variation of time derivatives of
the field values (60)2, for N=18 819 (2'! Cantor points), for A=1
and A=1.

Finally, a quantitative measure concerning the aforemen-
tioned dynamics is the Lyapunov exponent. Following [2],
we can calculate it analytically in this simple second-order
potential case. The constant curvature of the external poten-
tial leads to a Lyapunov exponent exactly equal to zero,
which according to our analysis can be related to limy_,.q.
However, a proof of this statement goes beyond the scope of
the present work.

B. Fourth-order potential

After analyzing the simple second-order potential case,
which revealed an interesting behavior though, we extend
our investigation to the fourth-order model, which will give
rise to nonlinear equations of motion. The potential has the
form

V(U)z%(ol— 1)’-Ac. (11)

Inspired by the o model, we assume that the Z, symmetry
(0——0) is broken only through a linear term, setting the
coefficient of the cubic term in the potential to zero. The
equations of motion derived from Egs. (1) and (11) are

G;= (0 + 0, =20) — (N0} =\o,—A), i=1,....N
o

(12)

which are solved using the leapfrog time discretization algo-
rithm given in the previous section.

We evolve the constructed fractal configuration according
to (12), assuming zero initial kinetic energy, for various po-
tential parameters. In Fig. 8 we draw the potential for three A
and A cases and in Fig. 9 the corresponding evolution of
(o(t)) and i(z).

The spatial mean field value {o(#)) oscillates around the
potential minimum, which now is one of the three roots of
V'(0)=No>-No—-A=0. Depending on A and A we can have
two minima and a maximum (middle plot of Fig. 8), one
minimum and one saddle point, or just one minimum (left
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FIG. 8. Potential (11) for A=1 and A=1 (a), for A=10 and A
=1 (b), and for A=1 and A=10 (c).

and right plots of Fig. 8). Contrary to the second-order case
of Fig. 4, the oscillation amplitude decreases with time due
to the anharmonic dynamics. However, the amplitude attenu-
ation weakens with increasing lattice size N, and for an infi-
nite system it remains constant.

As we observe in Fig. 9, the periodical partial reappear-
ance of the initial fractal mass dimension at times when
(o(t)) has a minimum holds, similarly to the harmonic case.
First, in this anharmonic case, as ¢(r)— 1 the power-law
form of m() is slightly distorted at large { values due to the
finite system size. Consequently, the power-law fit leads oc-
casionally to an effective i(r) slightly greater than 1. To
correct this behavior, one could restrict the fit to smaller ¢
values (worsening statistics) or go to significantly larger lat-
tices (huge computational times). Indeed, in Fig. 10 we
present the i(¢) evolution for a Cantor-like lattice of size
N=228 208, obtained using k=14, where the tendency of
() to approach the limiting value [¢{(t) — 1] becomes obvi-
ous. However, since this effect does not influence the reap-
pearance phenomenon and its characteristics, we will ignore
it in the following analysis. Second, the time scale 7;, which
determines the period of the reappearance, coincides with the

4 4

(@) (e)

A
~
Rt

©)

\Y

2

FIG. 9. (Color online) {o(z)) and ¢{(r) evolution for A=1 and
A=1 (a), (b), for A\=10 and A=1 (c), (d), and for A\=1 and A=10
(e), (f), in the fourth-order potential case. The dashed line in the
lower graphs marks the F(f)=1-[1-¢(0)]e™? curve, with ¢
=0.016, 0.024, and 0.014, respectively.
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1.1+

1.0

y(t)

0.9

0.8

FIG. 10. (Color online) ¢(t) evolution for A\=1 and A=1 in the
fourth-order potential case, for a Cantor-like lattice of size N
=228 208, obtained using k=14. The dashed line marks the F(z)
=1-[1-¢(0)]e™" curve, with ¢=0.0089. The effective exceeding
of 1 is decreased due to the increased lattice size.

oscillation period 7. It cannot be calculated analytically, and
in Fig. 11 we depict its dependence on A and A found nu-
merically. Third, the computation of AE(r) leads to results
similar to those for the second-order case, that is, it possesses
minima simultaneously with (o(r)) and (7).

Continuing, we study the dependence of the exponent g of
Eq. (10), which quantifies the gradual permanent deforma-
tion of the initial fractal geometry, on the various parameters.
Note, however, that in general in this fourth-order potential
case the upper envelope of the ¢(r) graph is more complex.
In Fig. 12 we present g versus lattice site number N (left
plot), and versus the corresponding initial variation (80)?
(right plot). Its behavior is similar to the second-order case of
Fig. 6 and the interpretation is the same. However, the cor-
responding ¢ values seem to be slightly increased, that is, the
anharmonic dynamics deforms the initial fractal geometry
earlier. The explanation of this behavior is the decreasing
oscillation amplitude of this case (see Fig. 9). Indeed, the
system’s lower turning point moves gradually to larger val-
ues, i.e., (a(z)) does not return to zero, and the initially zero
background remains excited, thus spoiling the fractal mass
dimension. The permanent oscillator displacement from zero
is an additional mechanism of fractality deformation in a
finite system, apart from the mixing and desynchronization
caused by the partial derivative. Its effect weakens with in-

8-
— 6 =1

4

2

0l . . . . :

.. 0 20 40 60 A 80 100
[ 6+ A=1

44

0l . . .

0 0 40 6 80 100

FIG. 11. Dependence of oscillation period 7, which coincides
with time scale 71, on A and A\ in the fourth-order potential case.
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0.1

0.014

10° 10° 10° 0.1 20-2
N (30)

FIG. 12. (Color online) Left: exponent g and its errors versus
total lattice site number N, for A=1 and A=1 in the fourth-order
potential case. Right: ¢ versus the initial variation of the field values
(80)?, calculated for the different N values of the left plot. The solid
lines mark exponential fits.

creasing N, since the amplitude attenuation weakens too, as
we have already mentioned.

The amplified deformation rate can be deduced also from
Fig. 13, where we depict the dependence of g on the initial
variation of g;. It resembles the corresponding Fig. 7 of the
harmonic case, but now ¢ is significantly larger, especially
for large (S8c)%. Therefore, the increased initial kinetic energy
interferes intensely with the complex fourth-order dynamics,
leading to a deformation of the initial fractality at signifi-
cantly smaller times.

The main difference between the fourth- and second-order
cases is the effect of A and A on ¢. Contrary to the previous
harmonic potential, where the g-\ and g-A plots are trivial
horizontal lines, in Fig. 14 we show these graphs for the case
in hand. We elicit that ¢ increases almost algebraically with
N while it decreases with A in a more complex way. Al-
though variation of N seems to be slightly more important
than that of A, both have less influence on ¢ than N and g;.

A possible explanation of this dependence of g on A and A
could be the corresponding Lyapunov exponent. For the
fourth-order potential this exponent cannot be calculated

g
14 ;-:HE
o .
_E
0.14 = ¥
[
i L]
0.01-
10" 10 107 10" 10° 10

"\2
(80)
FIG. 13. Exponent ¢ versus initial variation of time derivatives

of the field values (85)%, for N=18 819 (2'! Cantor points), for A
=1 and A=1 in the fourth-order potential case.
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FIG. 14. ¢ dependence on X\ (left plot) and A (right plot) in the
fourth-order potential case, for N=18 819 (2!! Cantor points).

analytically. We estimate it semianalytically following [2],
and we find that for finite NV it is no longer zero, but takes a
small nonzero value depending on the potential parameters,
especially on the curvature, i.e., on N\. However, even in this
anharmonic case, the Lyapunov exponent seems to tend to
zero for larger N; therefore an infinite system will possess
the reappearance phenomenon for infinite time (¢—0, i.e.,
7,—© for N— ), consistently with Fig. 12.

IV. TWO- AND HIGHER-DIMENSIONAL EVOLUTION

It is necessary to investigate the validity of the allegation
described above in higher-dimensional systems, where criti-
cal behavior can naturally arise. Keeping as a central observ-
able of interest for the critical system the fractal geometry of
the clusters formed at the critical point, it is possible to
model, in a simplified manner, the critical system with an
ordinary geometrical set possessing the appropriate fractal
mass dimension. In fact, we can construct a set with dimen-
sion D, embedded in a D-dimensional space, by taking the
Cartesian product of 1D sets, generated by the procedure
described in Sec. II, each one having fractal mass dimension
D/D [19]. For simplicity we consider here the 2D case,
leading to an N; X N, lattice where the field values are the
products of the corresponding one-dimensional ones, thus
resulting in 2%1 X 2k2+1°s. As a concrete example, following
the steps of Sec. IT we produce a 1551 X 1551 lattice arising
from the Cartesian product of two 28 Cantor sets, each one
possessing fractal mass dimension 5/6. The set of lattice
sites with nonvanishing field values is a finite realization of a
fractal set with dimension 5/3 embedded in a two-
dimensional space.

It is straightforward to generalize the equations of motion
(7) and (12) for the second- and fourth-order potential cases,
respectively. The initial equilibrium corresponds to a field
configuration with zero kinetic energy, similarly to the 1D
analysis. The evolution of the system is depicted in Fig. 15
for A=1 and A=1. We show the mean displacement (o(t))
(averaged over the lattice), as well as the running mass di-
mension (r). We observe the same phenomenon of the par-
tial reestablishment of the initial fractal geometry every time
(o(t)) approaches its lower turning point. The time scale 7,
of the reappearance period coincides with that of the oscilla-

PHYSICAL REVIEW E 75, 041111 (2007)

<c(t)>

20 30

t

FIG. 15. (Color online) {(o(z)) and ¢(r) evolution for A=1 and
A=1, for the second-order (a), (b), fourth-order potential (c), (d).
The dashed line in the lower graphs marks the F(1)=2-[2
—(0)]e™?" curve, with g=0.14 and 0.13, respectively.

tions, and the envelope of the minima of (z) has an expo-
nential form with exponent ¢, similarly to the 1D case, sug-
gesting that the analysis of the previous section is also valid
in this case. It is clearly seen in Fig. 15 that /(0) equals 5/3,
and (1) reaches successively the embedding dimension
value 2, as expected. However, the exponent ¢ is almost one
order of magnitude larger, leading to the conclusion that the
higher-dimensional dynamics deforms the initial fractal ge-
ometry earlier.

The same procedure can easily be extended to three di-
mensions. However, since the lattice site number increases
rapidly with increasing dimension, we have to use a very
coarse-grained approximation of the initial Cantor set in or-
der to acquire plausible computational evolution times.

V. SUMMARY AND CONCLUSIONS

In the present work we have investigated the evolution of
a fractal set resembling the order parameter clusters formed
at the critical point of a macroscopic system. Our analysis is
based on a simplified description of the critical system, re-
stricted to the reproduction of the correct fractal mass dimen-
sion. We assumed initial equilibrium and explored the varia-
tion of this appropriately defined fractal mass dimension
with time. We found that the initial fractal geometry is being
deformed and partially reestablished periodically, at times
when the mean field value returns to its lower turning point.
The origin of this effect is made more transparent in a har-
monic 1D model. For a complete study, we investigated the
influence of anharmonic interactions as well as initial devia-
tions from equilibrium on the time scales determining the
reappearance phenomenon. We derived an analytical expres-
sion describing, to a sufficient accuracy, the value of the
running fractal mass dimension i(z) at the reappearance
times, and we showed that the reappearance frequency coin-
cides with that of the oscillations. The total duration of the
reestablishment process is inversely proportional to a char-
acteristic exponent g, which depends on various parameters
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of the model. In particular, ¢ is a decreasing function of the
total lattice size N, the initial field variation (80)?, and the
initial time derivative variation (8¢)2. Therefore, in an infi-
nite system the initial fractal mass dimension reappears for-
ever. The only qualitative difference between the harmonic
and anharmonic analyses is the ¢ dependence on the poten-
tial parameters N\ and A in the fourth-order case.

The same treatment can be followed in higher-
dimensional (D=2) systems, too. In these cases more rel-
evant for the simulation of real critical systems, we observed
a similar behavior which can be explained in an analogous
manner. The only quantitative difference is that g increases
significantly with D. Therefore, the partial reappearance of
the initial fractal geometry seems to be a robust property of
the evolution of critical systems, rendering the corresponding
fractal dimension a significant observable that can be deter-
mined even in the symmetry-broken phase. This in turn al-
lows for the calculation of critical exponents and the deter-
mination of the universality class of the occurring transition.
Our analysis is of interest for the study of the fireball evolu-
tion in a heavy-ion collision experiment, when the system at

PHYSICAL REVIEW E 75, 041111 (2007)

some intermediate stage passes through the QCD critical
point, and the main question is whether imprints of the tran-
sient critical state can be sustained for sufficiently large
times in order to be observed at the detectors [7]. Similarly, it
could be applied to the primordial fractal fluctuations of the
inflationary field in order to investigate their evolution to the
present large-scale inhomogeneities, and with appropriate
modifications, to the evolution of astrophysical fractals, such
as star and galaxy clusters, to determine their deformation
scales.
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